

Subscriber access provided by ISTANBUL TEKNIK UNIV

Application of 2D Nmr Spectroscopy to the Structural Establishment of the Major Hydrolysis Product of Aescin

Pawan K. Agrawal, Raghunath S. Thakur, and James N. Shoolery

J. Nat. Prod., 1991, 54 (5), 1394-1396• DOI: 10.1021/np50077a025 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50077a025 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

APPLICATION OF 2D NMR SPECTROSCOPY TO THE STRUCTURAL ESTABLISHMENT OF THE MAJOR HYDROLYSIS PRODUCT OF AESCIN^{1,2}

PAWAN K. AGRAWAL,*³ RAGHUNATH S. THAKUR,

Central Institute of Medicinal & Aromatic Plants. Lucknow-226016. India

and JAMES N. SHOOLERY⁴

NMR Application Laboratory, Varian Associates. Palo Alto, California 94303

ABSTRACT.—The structure of the major product, protoaescigenin [1], obtained by acid hydrolysis of aescin from *Aesculus indica* was established as olean-12-ene-3 β , 16 α , 21 β , 22 α , 24, 28-hexaol. Unambiguous ¹H- and ¹³C-nmr spectral assignments were made on the basis of selected 2D nmr experiments (¹H-¹H and ¹H-¹³C COSY) combined with standard 1D nmr experiments.

Aescin, an anti-inflammatory principle of *Aesculus indica* Hook. (Hippocastanaceae) (1), was considered to be a mixture of acylated and nonacylated glycosides derived from pentahydroxy and hexahydroxy oleanane triterpenoids as the aglycone residue and a trisaccharide unit as the sugar moiety (2). Earlier we carried out chemical studies on aescin (a mixture of four constituents)

¹Part 35 in the series "Studies on Medicinal Plants." For part 34 see G.C. Uniyal, P.K. Agrawal, O.P. Sati and R.S. Thakur, *Phytochemistry*, **30**, 1336 (1991). CIMAP publication no. 936.

²Part 28 in the series "Carbon-13 nmr Spectral Investigations." For part 27 see P.K. Agrawal, R.S. Thakur, A.W. Frahm, and M. Schneider, *J. Chem. Res.*. submitted (1991).

³Present address: Department of Chemistry and Biochemistry, University of Maryland, Baltimore County Campus, Baltimore, Maryland 21228.

⁴Present address: 2301 Bowdoin St., Palo Alto, California 94306. isolated from the MeOH extract of seeds of A. indica, which resulted in the isolation of two new triterpenoid glycosides: aesculuside A (3) and aesculuside B (4). Aescin, on acid hydrolysis, led to the formation of several products. Chromatographic purification of the hydrolysate afforded one major constituent, **1**. We report its structural establishment and ¹H- and ¹³C-nmr assignments.

RESULTS AND DISCUSSION

The 1D nmr spectra of 1 showed the number of hydrogens (except five hydroxyls) and carbons corresponding to the molecular formula C30H50O6. In conjunction with DEPT-edited spectral data (5), the normal ¹³C nmr spectrum (Table 1) confirmed the presence of six methyls, nine methylenes, eight methines, and seven quaternary carbons. The ratio of carbons to hydrogens in the molecule indicated five degrees of cyclization and/or unsaturation. Since there are two olefinic signals (δ 144.14 and 123.05) in the ¹³C-nmr spectrum, the combined data strongly suggested it to be a pentacyclic triterpene having a trisubstituted olefinic bond. The oleanane skeleton appeared likely on the basis of the previously isolated constituents of aescin (2), and it was in conformity with the appearance of the olefinic methine at δ 123.05 and the olefinic quaternary resonance at δ 144.14 which are characteristic of olean-12-enes (6). Because

Sep-Oct 1991]

Carbon	δ ¹³ C	Multiplicity ^a	¹ H ^b	Multiplicity and coupling constants ⁶
C-13	144.14	с		_
C-12	123.05	СН	5.30	brs
С-3	80.08	СН	3.55	dd, I = 4.50, 10.5
C-21	78.61	СН	4.67	d, $I = 10.5$
C-22	77.08	СН	4.52	d, $J = 10.5$
C-28	66.16	CH ₂	3.90, 3.59	each d, I = 10.5
C-16	67.79	СН	4.91, 5.73(OH)	br s
C-24	64.53	CH,	4.38, 3.57	eachd, J = 10.5
C-5	56.26	СН	0.88	
С-19	48.11	CH ₂	2.94, 1.34	dd
C-17	47.20	C	—	
С-9	47.09	СН	1.70	
С-4	43.01	C	—	
C-14	41.83	C	_	
C-18	41.01	СН	2.69	br dd
С-8	39.90	C	—	
С-1	38.75	CH ₂	1.49, 0.93	1
C-10	36.83	C	—	1
С-20	36.27	C	—	1
C-15	34.10	CH ₂	1.98, 1.55	1
С-7	33.37	CH ₂	1.50, 1.19	1
С-29	30.40	CH ₃	1.22	\$
С-2	28.22	CH ₂	1.80, 1.91	1
С-27	27.19	CH ₃	1.73	S
C-11	23.92	CH ₂	1.82, 1.75	1
C-23	23.34	CH ₃	1.43	S
C-30	19.25	CH ₃	1.27	S
С-6	18.85	CH ₂	1.55	1
C-26	16.62	CH ₃	0.80	S
C-25	16.01	CH ₃	0.81	S

TABLE 1. ¹H- and ¹³C-nmr Spectral Assignments of Protoaeseigenin [1].

^aBased on the DEPT analysis.

^bBased on ¹H-¹H COSY and ¹H-¹³C COSY.

^c Coupling constant values given in Hz.

there were four hydroxylated methine resonances (δ 80.08, 78.61, 77.08, and 67.79) and two hydroxylated methylene resonances (δ 68.15 and 64.53) in its ¹³C-nmr spectrum, **1** was considered to be a hexahydroxylated olean-12-ene.

A preliminary search of the literature revealed that there are only two known triterpenoids, protoaescigenin (7) and gmnemagenin (8), which contained the anticipated functional groups. Significant differences, particularly for ring-A resonances with gmnemagenin, were observed when the ¹³C shielding data was compared. However, a close resemblance was noted for the calculated values for the aglycone of aesculuside B after deletion of glycosidation effects (9). Thus, **1** could be tentatively identified as olean-12-ene- 3β , 16α , 21β , 22α , 24, 28-hexaol (protoaescigenin).

The ¹H-nmr assignments were based upon the analysis of the ¹H-¹H COSY spectrum. The H-12 olefinic methine proton resonated at δ 5.30 as a broad singlet exhibiting cross peaks with the H-11 methylene protons at δ 1.82 and 1.75, which were in turn correlated with the H-9 methine at δ 1.70. The three protons on H-16 and H-15 were identified at δ 4.91 (H-16), and 1.98 and 1.55 (H-15) whereas the signal at δ 5.73 was assigned to OH-16. The H-28 and H-24 methylene protons were assigned

to the resonances at δ 3.90 and 3.59. and δ 4.38 and 3.57, respectively, related by the geminal coupling constant. The doublet (J = 10.5 Hz) resonances at δ 4.67 and 4.52 were ascribed to diaxial protons of the H-21 and H-22 positions. revealing diequatorial orientation of the hydroxyl groups at these positions. The H-3 proton was identified at δ 3.55 with two apparent ³/ couplings with H-2 at δ 1.91 and 1.80 indicating an axial orientation. The H-2 protons were further correlated with resonances at δ 1.49 and 0.93; hence these could be considered for the methylene at the 1 position. The non-equivalent protons of H-19 were observed at δ 2.94 and 1.34, exhibiting couplings with H-18 at δ 2.69. The most shielded methine resonance at δ 0.88 was assigned to H-5, which exhibited cross peak at δ 1.55 corresponding to the H-6 methylene protons, which were further correlated with the H-7 methylene protons at δ 1.50 and 1.19. The assignments for the methyl resonances at δ 0.81 and 0.80 to H-25 and H-26 were straightforward as cross peaks were observed with methylene protons of the 1 and 7 positions, respectively. Analogously, the methyl resonance at δ 1.73 was assigned to H-27 as it displayed cross peaks with methylene protons of the 15 position. The detailed analysis of the ¹H-¹H COSY led to the complete assignments of the ¹H-nmr resonances as presented in Table 1.

Based upon the ¹H-nmr assignments, the ¹³C-nmr chemical shifts for the protonated carbon resonances could readily be correlated by the one-bond ¹H-¹³C COSY spectrum. The assignment of the resonance at δ 144.14 to C-13 was straightforward, whereas assignments of other nonprotonated carbon resonances were made on the basis of comparison with those for related triterpenoids (6) and by consideration of the empirical rules. This led to the confirmation of the 13 C-nmr assignments proposed earlier (7).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURE. The ¹H and ¹³C nmr were obtained with a Gemini-300 (300 MHz) nmr spectrometer (Varian associates) in pyridine- d_5 solutions with TMS as internal standard. Chemical shift values are reported in ppm downfield from TMS. The onebond ¹H-¹³C shift correlation experiment was carried out with the standard Varian HETCOR pulse sequence on the Gemini-300 spectrometer. The spectral width was 6334.9 Hz in the F1 dimension, with 12750 Hz in the F2 dimension with 2K data points. The ¹H-¹H COSY spectrum was recorded on a Varian-600 MHz nmr spectrometer. The spectral width was 6334.9 Hz in both dimensions with 2K data points.

PLANT MATERIAL AND EXTRACTION.—The collection data for plant material and the isolation procedure of aescin were detailed elsewhere (3,4). Aescin (3 g) was treated with 2 N HCl-dioxane (1:1) for 3 h under reflux, and the hydrolysate was partitioned between EtOAc and H₂O. The EtOAc extract was concentrated and chromatographed on Si gel and on elution with CHCl₃-MeOH (7:3) afforded compound **1** (350 mg), mp 308° (7).

LITERATURE CITED

- 1. "The Wealth of India," C.S.I.R., New Delhi, 1956, p. 8.
- B. Singh, P.K. Agrawal, and R.S. Thakur, Fitoterapia, (in press).
- B. Singh, P.K. Agrawal, and R.S. Thakur, Planta Med., 56, 409 (1986).
- B. Singh, P.K. Agrawal, and R.S. Thakur, J. Nat. Prod., 50, 781 (1987).
- D.M. Doddrell, D.T. Pegg, and M.R. Bendell, J. Magn. Reson., 48, 323 (1982).
- 6. P.K. Agrawal and D.C. Jain, Progr. NMR Spectrosc., (in press).
- 7. Y. Chen, T. Takeda, and Y. Ogihara, *Chem. Pharm. Bull.*, **33**, 1347 (1985).
- Y. Tsuda, F. Kikuchi, and H.M. Liu, Tetrahedron Lett., 30, 361 (1985).
- P.K. Agrawal and M.C. Bansal, in: "Carbon-13 Nmr of Flavonoids, Studies in Organic Chemistry, Vol. 39." Ed. by P.K. Agrawal, Elsevier Science Publishers, Amsterdam, The Netherlands, 1989, p. 283.

Received 20 August 1990